Preschool Magnets Fast Facts

You Are Here: Preschool >> Themes >> Preschool Magnets Theme >> Preschool Magnets Fast Facts

magnet is an object that has a magnetic field.

A so-called permanent magnet is made of a ferromagnetic material. Such materials consist of atoms or molecules that have each have a magnetic field (resulting from the spin angular momentum of electrons within them), but objects composed of these materials have magnetic fields only to the extent that these microscopic magnetic fields are positioned to reinforce rather than cancel each other. The details of transition processes back and forth between reinforcing and cancelling orientations reflect the behavior of the material's magnetic domains, which are zones of mutually reinforcing molecules or atoms.

An electromagnet has a field produced by a current, typically through a loop or a coil of many turns; its field becomes insignificant when the current ceases.

Various materials (soft iron is a frequent example), when exposed to a magnetic field, direct and concentrate it, and consequently share many of the properties of permanent and electro- magnets. It is not usual to call them "induced magnets", but their behavior is often described as induced magnetism. Combinations of electromagnets with such materials, for the sake of this behavior, are often designed as a form of enhanced electromagnet. One of the more common types of magnet today is the Alnico magnet.

A magnet is a magnetic dipole. That is not really a statement about "having two poles", but about the mathematical properties of its magnetic field, which are reflected in the "magnetic field lines" or "lines of force" that are so convincingly evoked in the accompanying image. The poles are not a pair of things on or inside the magnet, but rather, for the purposes of this article, the two areas on the surface that look as they do in the image. (That look is a consequence of the highest surface intensity of the magnetic field strength occurring there.)

A standard naming system for the poles of magnets is important. A magnet can be regarded as having two magnetic poles; one "north" and one "south". Historically, those terms reflect awareness, by early scientific researchers into magnetism, of the relationship between magnets and the earth's magnetic field. A freely suspended magnet will eventually orient itself north-to-south, because of its attraction to the north and south magnetic poles of the earth. The end that points towards the Earth's geographical North Pole is called the magnetic north pole; correspondingly, the other end that ends up pointing south is the magnetic south pole. Note that since the north pole of the magnet is attracted to the south pole of another magnet, the Earth's geographic north is actually a magnetic south. Using this approach as a definition of terminology for magnetic poles and fields would require a clarification about the terms not being interchanged when the earth's magnetic field undergoes its next reversal. Without addressing the details, a formal definition in terms of direction of current in an elctromagnet and a "right-hand rule" defines north and south for magnetic fields, without reference to the earth's geomagnetic field.

The mistaken idea of a magnetic pole as a thing rather than as a description of the orientation of a magnetic field invites the expectation that cutting a magnet in half should separate the two poles. There are theories involving the possibility of north and south magnetic monopoles, which could be mounted at the ends of, say, a wooden rod to produce a dipole magnet. This could indeed be cut to separate the monopoles. In contrast, all known magnets have dipole fields resulting from motion of electric charges without such monopoles, and separation of parts of such a magnet merely produces smaller magnets with weaker dipole fields, each with ends that we label north and south. Unless magnetic monopoles turn out to exist, we will never see a north pole without a south one, because in all the magnets that have been found or created they are complementary directions rather than two separable things.

"Permanent" magnets can be demagnetized in the following ways:

* Heat (Heating a magnet until it is red hot will make it lose its magnetic properties.)
* Contact (Stroking one magnet with another in random fashion will demagnetize the magnet being stroked.)
* Hammering and/or Jarring (Such activity will loosen the magnet's atoms from their magnetic attraction.)
* Breaking electric current (for electromagnets only)

The Earth's magnetic field has a north and south pole. We can use the magnetic field of the Earth to help navigate by using a magnetic compass. Compasses can also be used to figure out which side of a magnet is the north or south pole of that magnet.

These fast facts were based off of a Wikipedia Document on Magnets.

If you are not familiar with Wikipedia it is "the free encyclopedia that anyone can edit." This means that these pages were put together from thousands of people working collectively to create sources of information such as this one.

Just like any written work the authors or contributors of the article own the copyright but by contributing their work to Wikipedia they are licensing it under the terms of the GNU FDL This license means that you are free to print and share the articles with anyone you wish, provided that you comply with the GNU FDL. If you share them please let recipients know they are free to continue sharing the article under the same terms. Of course we would appreciate you mentioning you got them from Also please use the suggestions box above to provide us with additional information to include on our pages